

Welcome to Haddock’s documentation!

This is Haddock, a tool for automatically generating documentation from
annotated Haskell source code.

Contents:

	Introduction
	Obtaining Haddock

	License

	Contributors

	Acknowledgements

	Invoking Haddock
	Using literate or pre-processed source

	Avoiding recompilation

	Documentation and Markup
	Documenting a Top-Level Declaration

	Documenting Parts of a Declaration

	The Module Description

	Controlling the Documentation Structure

	Hyperlinking and Re-Exported Entities

	Module Attributes

	Markup

	Common Errors
	parse error on input ‘-- | xxx’

	parse error on input ‘-- $ xxx’

	Haddocks of multiple components

Indices and tables

	Index

	Search Page

Introduction

This is Haddock, a tool for automatically generating documentation from
annotated Haskell source code. Haddock was designed with several goals
in mind:

	When documenting APIs, it is desirable to keep the documentation
close to the actual interface or implementation of the API,
preferably in the same file, to reduce the risk that the two become
out of sync. Haddock therefore lets you write the documentation for
an entity (function, type, or class) next to the definition of the
entity in the source code.

	There is a tremendous amount of useful API documentation that can be
extracted from just the bare source code, including types of exported
functions, definitions of data types and classes, and so on. Haddock
can therefore generate documentation from a set of straight Haskell
98 modules, and the documentation will contain precisely the
interface that is available to a programmer using those modules.

	Documentation annotations in the source code should be easy on the
eye when editing the source code itself, so as not to obscure the
code and to make reading and writing documentation annotations easy.
The easier it is to write documentation, the more likely the
programmer is to do it. Haddock therefore uses lightweight markup in
its annotations, taking several ideas from
IDoc [https://web.archive.org/web/20180621053227/http://www.cse.unsw.edu.au/~chak/haskell/idoc/]. In fact,
Haddock can understand IDoc-annotated source code.

	The documentation should not expose any of the structure of the
implementation, or to put it another way, the implementer of the API
should be free to structure the implementation however he or she
wishes, without exposing any of that structure to the consumer. In
practical terms, this means that while an API may internally consist
of several Haskell modules, we often only want to expose a single
module to the user of the interface, where this single module just
re-exports the relevant parts of the implementation modules.

Haddock therefore understands the Haskell module system and can
generate documentation which hides not only non-exported entities
from the interface, but also the internal module structure of the
interface. A documentation annotation can still be placed next to the
implementation, and it will be propagated to the external module in
the generated documentation.

	Being able to move around the documentation by following hyperlinks
is essential. Documentation generated by Haddock is therefore
littered with hyperlinks: every type and class name is a link to the
corresponding definition, and user-written documentation annotations
can contain identifiers which are linked automatically when the
documentation is generated.

	We might want documentation in multiple formats - online and printed,
for example. Haddock comes with HTML, LaTeX, and Hoogle backends, and
it is structured in such a way that adding new backends is
straightforward.

Obtaining Haddock

Haddock is distributed with GHC distributions, and will automatically be provided if you use
ghcup [https://www.haskell.org/ghcup], for instance.

Up-to-date sources can also be obtained from our public GitHub
repository. The Haddock sources are at
https://github.com/haskell/haddock.

License

The following license covers this documentation, and the Haddock source
code, except where otherwise indicated.

Copyright (c) 2002-2010, Simon Marlow
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:

	Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

	Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the
distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
“AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Contributors

A list of contributors to the project can be seen at
https://github.com/haskell/haddock/graphs/contributors.

Acknowledgements

Several documentation systems provided the inspiration for Haddock, most
notably:

	IDoc [https://web.archive.org/web/20180621053227/http://www.cse.unsw.edu.au/~chak/haskell/idoc/]

	HDoc [https://mail.haskell.org/pipermail/haskelldoc/2001-April/000067.html]

	Doxygen [https://www.doxygen.nl/index.html]

and probably several others I’ve forgotten.

Thanks to the the members of haskelldoc@haskell.org,
haddock@projects.haskell.org and everyone who contributed to the many
libraries that Haddock makes use of.

Invoking Haddock

Haddock is invoked from the command line, like so:

haddock [option ...] file ...

Where each file is a filename containing a Haskell source module (.hs)
or a Literate Haskell source module (.lhs) or just a module name.

All the modules specified on the command line will be processed
together. When one module refers to an entity in another module being
processed, the documentation will link directly to that entity.

Entities that cannot be found, for example because they are in a module
that isn’t being processed as part of the current batch, simply won’t be
hyperlinked in the generated documentation. Haddock will emit warnings
listing all the identifiers it couldn’t resolve.

The modules should not be mutually recursive, as Haddock don’t like
swimming in circles.

Note that while older version would fail on invalid markup, this is
considered a bug in the new versions. If you ever get failed parsing
message, please report it.

You must also specify an option for the output format. Currently only
the --html option for HTML, the --hoogle option for
outputting Hoogle data, and the --latex option are functional.

The packaging tool
Cabal [http://www.haskell.org/ghc/docs/latest/html/Cabal/index.html]
has Haddock support, and is often used instead of invoking Haddock
directly.

The following options are available:

	
-B <dir>

	Tell GHC that its lib directory is dir. Can be used to override
the default path.

	
-o <dir>

	
--odir=<dir>

	Generate files into dir instead of the current directory.

	
-l <dir>

	
--lib=<dir>

	Use Haddock auxiliary files (themes, javascript, etc…) in dir.

	
-i <file>

	
--read-interface=<file>

	
-i <docpath>,<file>

	
--read-interface=<docpath>,<file>

	
-i <docpath>,<srcpath>,<file>

	
--read-interface=<docpath>,<srcpath>,<file>

	
-i <docpath>,<srcpath>,<visibility>,<file>

	Read the interface file in file, which must have been produced by
running Haddock with the --dump-interface option. The interface
describes a set of modules whose HTML documentation is located in
docpath (which may be a relative pathname). The docpath is optional,
and defaults to “.”. The srcpath is optional but has no default
value.

This option allows Haddock to produce separate sets of documentation
with hyperlinks between them. The docpath is used to direct
hyperlinks to point to the right files; so make sure you don’t move
the HTML files later or these links will break. Using a relative
docpath means that a documentation subtree can still be moved around
without breaking links.

Similarly to docpath, srcpath is used generate cross-package
hyperlinks but within sources rendered with --hyperlinked-source
option.

If visibility is set to hidden, modules from that interface file will
not be listed in haddock generated content file.

Multiple --read-interface options may be given.

	
-D <file>

	
--dump-interface=<file>

	Produce an interface file 1 in the file file. An interface file
contains information Haddock needs to produce more documentation
that refers to the modules currently being processed - see the
--read-interface option for more details. The interface file is
in a binary format; don’t try to read it.

	
--show-interface=<file>

	Dumps a binary interface file to stdout in a human readable fashion.
Uses json as output format.

	1

	Haddock interface files are not the same as Haskell interface files,
I just couldn’t think of a better name.

	
--html, -h

	Generate documentation in HTML format. Several files will be
generated into the current directory (or the specified directory if
the -o option is given), including the following:

	module.html; mini_module.html

	An HTML page for each module, and a “mini” page for each used
when viewing their synopsis.

	index.html

	The top level page of the documentation: lists the modules
available, using indentation to represent the hierarchy if the
modules are hierarchical.

	doc-index.html; doc-index-X.html

	The alphabetic index, possibly split into multiple pages if big
enough.

	some.css; etc...

	Files needed for the themes used. Specify your themes using the
--theme option.

	haddock-util.js

	Some JavaScript utilities used to implement some of the dynamic
features like collapsible sections.

	
--mathjax

	Specify a custom URL for a mathjax-compatible JS script. By default,
this is set to MathJax [https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.0/MathJax.js?config=TeX-AMS-MML_HTMLorMML].

	
--latex

	Generate documentation in LaTeX format. Several files will be
generated into the current directory (or the specified directory if
the -o option is given), including the following:

	package.tex

	The top-level LaTeX source file; to format the documentation
into PDF you might run something like this:

$ pdflatex package.tex

	haddock.sty

	The default style. The file contains definitions for various
macros used in the LaTeX sources generated by Haddock; to change
the way the formatted output looks, you might want to override
these by specifying your own style with the --latex-style
option.

	module.tex

	The LaTeX documentation for each module.

	
--latex-style=<style>

	This option lets you override the default style used by the LaTeX
generated by the --latex option. Normally Haddock puts a
standard haddock.sty in the output directory, and includes the
command \usepackage{haddock} in the LaTeX source. If this option
is given, then haddock.sty is not generated, and the command is
instead \usepackage{style}.

	
--hoogle

	Generate an index file for the
Hoogle [http://hackage.haskell.org/package/hoogle] search engine.
One text file will be generated into the current directory (or the
specified directory if the -o is given). Note that
the --package-name is required.

Since the output is intended to be parsed by Hoogle, some conventions
need to be upheld:

	Every entity should span exactly one line.

newtype ReaderT r (m :: * -> *) a :: * -> (* -> *) -> * -> *

The one exception to this rule is classes. The body of a class
is split up with one class member per line, an opening brace on
the line of the header, and a closing brace on a new line after
the class.

class Foo a where {
 foo :: a -> a -> Baz a;
 type family Baz a;
 type Baz a = [(a, a)];
}

	Entites that are exported only indirectly (for instance data
constructors visible via a ReaderT(..) export) have their names
wrapped in square brackets.

[ReaderT] :: (r -> m a) -> ReaderT r m a
[runReaderT] :: ReaderT r m a -> r -> m a

	
--hyperlinked-source

	Generate hyperlinked source code (as HTML web page). All rendered
files will be put into src/ subfolder of output directory.

Usually, this should be used in combination with --html option -
generated documentation will then contain references to appropriate
code fragments. Previously, this behaviour could be achieved by
generating sources using external tool and specifying
--source-base, --source-module, --source-entity and
related options. Note that these flags are ignored once
--hyperlinked-source is set.

In order to make cross-package source hyperlinking possible,
appropriate source paths have to be set up when providing interface
files using --read-interface option.

	
--source-css=<style>

	Use custom CSS file for sources rendered by the
--hyperlinked-source option. If no custom style file is
provided, Haddock will use default one.

	
-S, --docbook

	Reserved for future use (output documentation in DocBook XML
format).

	
--base-url=<url>

	Base url for static assets (eg. css, javascript, json files etc.).
When present, static assets are not copied. This option is useful
when creating documentation for multiple packages, it allows to have
a single copy of static assets served from the given url.

	
--source-base=<url>

	
--source-module=<url>

	
--source-entity=<url>

	
--source-entity-line=<url>

	Include links to the source files in the generated documentation.
Use the --source-base option to add a source code link in the
header bar of the contents and index pages. Use the
--source-module to add a source code link in the header bar of
each module page. Use the --source-entity option to add a source
code link next to the documentation for every value and type in each
module. --source-entity-line is a flag that gets used for
entities that need to link to an exact source location rather than a
name, eg. since they were defined inside a Template Haskell splice.

In each case URL is the base URL where the source files can be
found. For the per-module and per-entity URLs, the following
substitutions are made within the string URL:

	The string %M or %{MODULE} is replaced by the module
name. Note that for the per-entity URLs this is the name of the
exporting module.

	The string %N or %{NAME} is replaced by the name of the
exported value or type. This is only valid for the
--source-entity option.

	The string %K or %{KIND} is replaced by a flag indicating
whether the exported name is a value v or a type
t. This is only valid for the --source-entity option.

	The string %L or %{LINE} is replaced by the number of the
line where the exported value or type is defined. This is only
valid for the --source-entity option.

	The string %% is replaced by %.

If you have html versions of your sources online with anchors for
each type and function name, you would say
haddock --source-base=url/ --source-module=url/%M.html --source-entity=url/%M.html#%N

For the %{MODULE} substitution you may want to replace the
. character in the module names with some other character
(some web servers are known to get confused by multiple .
characters in a file name). To replace it with a character c use
%{MODULE/./c}.

One example of a tool that can generate syntax-highlighted HTML from
your source code, complete with anchors suitable for use from
haddock, is
hscolour [http://www.cs.york.ac.uk/fp/darcs/hscolour].

	
-s <url>

	
--source=<url>

	Deprecated aliases for --source-module

	
--comments-base=<url>

	
--comments-module=<url>

	
--comments-entity=<url>

	documentation. This feature would typically be used in conjunction
with a Wiki system.

Use the --comments-base option to add a user comments link in
the header bar of the contents and index pages. Use the
--comments-module to add a user comments link in the header bar
of each module page. Use the --comments-entity option to add a
comments link next to the documentation for every value and type in
each module.

In each case URL is the base URL where the corresponding comments
page can be found. For the per-module and per-entity URLs the same
substitutions are made as with the --source-module and
--source-entity options above.

For example, if you want to link the contents page to a wiki page,
and every module to subpages, you would say
haddock --comments-base=url --comments-module=url/%M

If your Wiki system doesn’t like the . character in Haskell
module names, you can replace it with a different character. For
example to replace the . characters with _ use
haddock --comments-base=url --comments-module=url/%{MODULE/./_}.
Similarly, you can replace the / in a file name (may be useful for
entity comments, but probably not).

	
--theme=<path>

	Specify a theme to be used for HTML (--html) documentation. If
given multiple times then the pages will use the first theme given
by default, and have alternate style sheets for the others. The
reader can switch between themes with browsers that support
alternate style sheets, or with the “Style” menu that gets added
when the page is loaded. If no themes are specified, then just the
default built-in theme (“Linuwial”) is used.

The path parameter can be one of:

	A directory: The base name of the directory becomes the name of
the theme. The directory must contain exactly one some.css
file. Other files, usually image files, will be copied, along
with the some.css file, into the generated output directory.

	A CSS file: The base name of the file becomes the name of the
theme.

	The name of a built-in theme (“Linuwial”, “Ocean”, or “Classic”).

	
--built-in-themes

	Includes the built-in themes (“Linuwial”, “Ocean”, and “Classic”). Can be
combined with --theme. Note that order matters: The first
specified theme will be the default.

	
--use-unicode

	Enable use of Unicode characters in HTML output.

	
-c <file>

	
--css=<file>

	Deprecated aliases for --theme

	
-p <file>

	
--prologue=<file>

	Specify a file containing documentation which is placed on the main
contents page under the heading “Description”. The file is parsed as
a normal Haddock doc comment (but the comment markers are not
required).

	
-t <title>

	
--title=<title>

	Use title as the page heading for each page in the
documentation.This will normally be the name of the library being
documented.

The title should be a plain string (no markup please!).

	
--package-name=<name>

	Specify the name of the package being documented.

	
--package-version=<version>

	Specify the version of the package being documented.

	
-q <mode>

	
--qual=<mode>

	Specify how identifiers are qualified.

mode should be one of

	none (default): don’t qualify any identifiers

	full: always qualify identifiers completely

	local: only qualify identifiers that are not part of the module

	relative: like local, but strip name of the module from
qualifications of identifiers in submodules

Example: If you generate documentation for module A, then the
identifiers A.x, A.B.y and C.z are qualified as follows.

	none: x, y, z

	full: A.x, A.B.y, C.z

	local: x, A.B.y, C.z

	relative: x, B.y, C.z

	
--since-qual=<mode>

	Specify how @since annotations are qualified.

mode should be one of

	always (default): always qualify @since annotations with
a package name and version

	only-external: only qualify @since annotations with a
package name and version when they do not come from the current
package

	
-?

	
--help

	Display help and exit.

	
-V

	
--version

	Output version information and exit.

	
--ghc-version

	Output the version of GHC which Haddock expects to find at :option:-B
and exit.

	
--print-ghc-path

	Output the path to the GHC (which Haddock computes based on :option:-B)
and exit.

	
--print-ghc-libdir

	Output the path to the GHC lib directory (which Haddock computes
based on :option:-B) and exit.

	
-v

	
--verbose

	Increase verbosity. Currently this will cause Haddock to emit some
extra warnings, in particular about modules which were imported but
it had no information about (this is often quite normal; for example
when there is no information about the Prelude).

	
--use-contents=<url>

	
--use-index=<url>

	When generating HTML, do not generate an index. Instead, redirect
the Contents and/or Index link on each page to URL. This option is
intended for use in conjunction with --gen-contents and/or
--gen-index for generating a separate contents and/or index
covering multiple libraries.

	
--gen-contents

	
--gen-index

	Generate an HTML contents and/or index containing entries pulled
from all the specified interfaces (interfaces are specified using
-i or --read-interface). This is used to generate a single
contents and/or index for multiple sets of Haddock documentation.

	
--hide <module>

	Causes Haddock to behave as if module module has the hide
attribute. (Module Attributes).

	
--show <module>

	Causes Haddock to behave as if module module does not have the hide
attribute. (Module Attributes).

	
--show-all

	Causes Haddock to behave as if no modules have the hide attribute.
(Module Attributes).

	
--show-extensions <module>

	Causes Haddock to behave as if module module has the
show-extensions attribute. (Module Attributes).

	
--optghc=<option>

	Pass option to GHC. Note that there is a double dash there, unlike
for GHC.

	
-w

	
--no-warnings

	Turn off all warnings.

	
--interface-version

	Prints out the version of the binary Haddock interface files that
this version of Haddock generates.

	
--compatible-interface-versions

	Prints out space-separated versions of binary Haddock interface
files that this version of Haddock is compatible with.

	
--bypass-interface-version-check

	DANGEROUS Causes Haddock to ignore the interface versions of
binary Haddock interface files. This can make Haddock crash during
deserialization of interface files.

	
--no-tmp-comp-dir

	Do not use a temporary directory for reading and writing compilation
output files (.o, .hi, and stub files). Instead, use the
present directory or another directory that you have explicitly told
GHC to use via the --optghc flag.

This flag can be used to avoid recompilation if compilation files
already exist. Compilation files are produced when Haddock has to
process modules that make use of Template Haskell, in which case
Haddock compiles the modules using the GHC API.

	
--print-missing-docs

	Print extra information about any undocumented entities.

	
--trace-args

	Make Haddock print the arguments it receives to standard output. This is
useful for examining arguments when invoking through cabal haddock, as
cabal uses temporary response files [https://gcc.gnu.org/wiki/Response_Files] to pass arguments to Haddock.

Using literate or pre-processed source

Since Haddock uses GHC internally, both plain and literate Haskell
sources are accepted without the need for the user to do anything. To
use the C pre-processor, however, the user must pass the -cpp
option to GHC using --optghc.

Avoiding recompilation

With the advent of “hi-haddock”, Haddock now produces documentation from .hi
(Haskell interface) files and .hie (.hi extended) files 2, rather
than typechecked module results. This means that as long as the necessary
.hi and .hie files are available (i.e. produced by your build process),
recompilation can be avoided during documentation generation.

	2

	Note that .hie files are only necessary to build documentation which
includes hyperlinked source files like this one [https://hackage.haskell.org/package/base-4.18.0.0/docs/src/GHC.Base.html],
while .hi files are required for all Haddock documentation flavors.

The first step is to ensure that your build process is producing .hi files
that contain Haddock docstrings. This requires that you somehow provide the
-fwrite-interface and -haddock flags to GHC. If you intend to generate
documentation that includes hyperlinked source files, you should also provide
the -fwrite-ide-info flag to GHC. You may specify the directory in which GHC
should write the .hi and .hie files by providing the
-hidir=/path/to/hidir and -hiedir=/path/to/hiedir flags to GHC. If you
are building your application with cabal build, the default location is in
dist-newstyle/build/<arch>-<os>/ghc-<ghc-version>/<component>-0.1.0/build.

The next step is to ensure that the flags which Haddock passes to GHC will not
trigger recompilation. Unfortunately, this is not very easy to do if you are
invoking Haddock through cabal haddock. Upon cabal haddock, Cabal passes
a --optghc="-optP-D__HADDOCK_VERSION__=NNNN" (where NNNN is the Haddock
version number) flag to Haddock, which forwards the -optP=... flag to GHC
and triggers a recompilation (unless the existing build results were also
created by a cabal haddock). Additionally, Cabal passes a
--optghc="-stubdir=<temp directory>" flag to Haddock, which forwards the
-stubdir=<temp directory> flag to GHC and triggers a recompilation since
-stubdir adds a global include directory. Moreover, since the stubdir
that Cabal passes is a temporary directory, a recompilation is triggered even
for immediately successive invocations. To avoid recompilations due to these
flags, one must manually extract the arguments passed to Haddock by Cabal and
remove the --optghc="-optP-D__HADDOCK_VERSION__=NNNN" and
--optghc="-stubdir=<temp directory>" flags. This can be achieved using the
--trace-args flag by invoking cabal haddock with
--haddock-option="--trace-args" and copying the traced arguments to a script
which makes an equivalent call to Haddock without the aformentioned flags.

In addition to the above, Cabal passes a temporary directory as -hidir to
Haddock by default. Obviously, this also triggers a recompilation for every
invocation of cabal haddock, since it will never find the necessary
interface files in that temporary directory. To remedy this, pass a
--optghc="-hidir=/path/to/hidir" flag to Haddock, where /path/to/hidir
is the path to the directory in which your build process is writing .hi
files.

Following the steps above will allow you to take full advantage of “hi-haddock”
and generate Haddock documentation from existing build results without requiring
any further compilation.

Documentation and Markup

Haddock understands special documentation annotations in the Haskell
source file and propagates these into the generated documentation. The
annotations are purely optional: if there are no annotations, Haddock
will just generate documentation that contains the type signatures, data
type declarations, and class declarations exported by each of the
modules being processed.

Documenting a Top-Level Declaration

The simplest example of a documentation annotation is for documenting
any top-level declaration (function type signature, type declaration, or
class declaration). For example, if the source file contains the
following type signature:

square :: Int -> Int
square x = x * x

Then we can document it like this:

-- |The 'square' function squares an integer.
square :: Int -> Int
square x = x * x

The -- | syntax begins a documentation annotation, which applies
to the following declaration in the source file. Note that the
annotation is just a comment in Haskell — it will be ignored by the
Haskell compiler.

The declaration following a documentation annotation should be one of
the following:

	A type signature for a top-level function,

	A definition for a top-level function with no type signature,

	A data declaration,

	A pattern declaration,

	A newtype declaration,

	A type declaration

	A class declaration,

	An instance declaration,

	A data family or type family declaration, or

	A data instance or type instance declaration.

If the annotation is followed by a different kind of declaration, it
will probably be ignored by Haddock.

Some people like to write their documentation after the declaration;
this is possible in Haddock too:

square :: Int -> Int
-- ^The 'square' function squares an integer.
square x = x * x

Since Haddock uses the GHC API internally, it can infer types for
top-level functions without type signatures. However, you’re
encouraged to add explicit type signatures for all top-level
functions, to make your source code more readable for your users, and
at times to avoid GHC inferring overly general type signatures that
are less helpful to your users.

Documentation annotations may span several lines; the annotation
continues until the first non-comment line in the source file. For
example:

-- |The 'square' function squares an integer.
-- It takes one argument, of type 'Int'.
square :: Int -> Int
square x = x * x

You can also use Haskell’s nested-comment style for documentation
annotations, which is sometimes more convenient when using multi-line
comments:

{-|
 The 'square' function squares an integer.
 It takes one argument, of type 'Int'.
-}
square :: Int -> Int
square x = x * x

Documenting Parts of a Declaration

In addition to documenting the whole declaration, in some cases we can
also document individual parts of the declaration.

Class Methods

Class methods are documented in the same way as top level type
signatures, by using either the -- | or -- ^ annotations:

class C a where
 -- | This is the documentation for the 'f' method
 f :: a -> Int
 -- | This is the documentation for the 'g' method
 g :: Int -> a

Associated type and data families can also be annotated in this way.

Constructors and Record Fields

Constructors are documented like so:

data T a b
 -- | This is the documentation for the 'C1' constructor
 = C1 a b
 -- | This is the documentation for the 'C2' constructor
 | C2 a b

or like this:

data T a b
 = C1 -- ^ This is the documentation for the 'C1' constructor
 a -- ^ This is the documentation for the argument of type 'a'
 b -- ^ This is the documentation for the argument of type 'b'

There is one edge case that is handled differently: only one -- ^
annotation occurring after the constructor and all its arguments is
applied to the constructor, not its last argument:

data T a b
 = C1 a b -- ^ This is the documentation for the 'C1' constructor
 | C2 a b -- ^ This is the documentation for the 'C2' constructor

Record fields are documented using one of these styles:

data R a b =
 C { -- | This is the documentation for the 'a' field
 a :: a,
 -- | This is the documentation for the 'b' field
 b :: b
 }

data R a b =
 C { a :: a -- ^ This is the documentation for the 'a' field
 , b :: b -- ^ This is the documentation for the 'b' field
 }

Alternative layout styles are generally accepted by Haddock - for
example doc comments can appear before or after the comma in separated
lists such as the list of record fields above.

In cases where more than one constructor exports a field with the same
name, the documentation attached to the first occurrence of the field
will be used, even if a comment is not present.

data T a = A { someField :: a -- ^ Doc for someField of A
 }
 | B { someField :: a -- ^ Doc for someField of B
 }

In the above example, all occurrences of someField in the
documentation are going to be documented with
Doc for someField of A. Note that Haddock versions 2.14.0 and before
would join up documentation of each field and render the result. The
reason for this seemingly weird behaviour is the fact that someField
is actually the same (partial) function.

Deriving clauses

Most instances are top-level, so can be documented as in
Documenting a Top-Level Declaration. The exception to this is instance that are
come from a deriving clause on a datatype declaration. These can
be documented like this:

data D a = L a | M
 deriving (Eq -- ^ @since 4.5
 , Ord -- ^ default 'Ord' instance
)

This also scales to the various GHC extensions for deriving:

newtype T a = T a
 deriving Show -- ^ derivation of 'Show'
 deriving stock (Eq -- ^ stock derivation of 'Eq'
 , Foldable -- ^ stock derivation of 'Foldable'
)
 deriving newtype Ord -- ^ newtype derivation of 'Ord'
 deriving anyclass Read -- ^ unsafe derivation of 'Read'
 deriving (Eq1 -- ^ deriving 'Eq1' via 'Identity'
 , Ord1 -- ^ deriving 'Ord1' via 'Identity'
) via Identity

Function Arguments

Individual arguments to a function may be documented like this:

f :: Int -- ^ The 'Int' argument
 -> Float -- ^ The 'Float' argument
 -> IO () -- ^ The return value

Pattern synonyms, GADT-style data constructors, and class methods also
support this style of documentation.

The Module Description

A module itself may be documented with multiple fields that can then be
displayed by the backend. In particular, the HTML backend displays all
the fields it currently knows about. We first show the most complete
module documentation example and then talk about the fields.

{-|
Module : W
Description : Short description
Copyright : (c) Some Person, 2013
 Someone Else, 2014
License : GPL-3
Maintainer : sample@email.com
Stability : experimental
Portability : POSIX

Here is a longer description of this module, containing some
commentary with @some markup@.
-}
module W where
...

All fields are optional but they must be in order if they do appear.
Multi-line fields are accepted but the consecutive lines have to start
indented more than their label. If your label is indented one space, as
is often the case with the -- syntax, the consecutive lines have
to start at two spaces at the very least. For example, above we saw a
multiline Copyright field:

{-|
...
Copyright : (c) Some Person, 2013
 Someone Else, 2014
...
-}

That could equivalently be written as:

-- | ...
-- Copyright:
-- (c) Some Person, 2013
-- Someone Else, 2014
-- ...

or as:

-- | ...
-- Copyright: (c) Some Person, 2013
-- Someone Else, 2014
-- ...

but not as:

-- | ...
-- Copyright: (c) Some Person, 2013
-- Someone Else, 2014
-- ...

since the Someone needs to be indented more than the
Copyright.

Whether new lines and other formatting in multiline fields is
preserved depends on the field type. For example, new lines in the
Copyright field are preserved, but new lines in the
Description field are not; leading whitespace is not preserved in
either 1. Please note that we do not enforce the format for
any of the fields and the established formats are just a convention.

	1

	Technically, whitespace and newlines in the
Description field are preserved verbatim by the HTML backend,
but because most browsers collapse whitespace in HTML, they don’t
render as such. But other backends may render this whitespace.

Fields of the Module Description

The Module field specifies the current module name. Since the module
name can be inferred automatically from the source file, it doesn’t
affect the output of any of the backends. But you might want to
include it for any other tools that might be parsing these comments
without the help of GHC.

The Description field accepts some short text which outlines the
general purpose of the module. If you’re generating HTML, it will show
up next to the module link in the module index.

The Copyright, License, Maintainer and Stability fields should
be obvious. An alternative spelling for the License field is accepted
as Licence but the output will always prefer License.

The Portability field has seen varied use by different library
authors. Some people put down things like operating system constraints
there while others put down which GHC extensions are used in the module.
Note that you might want to consider using the show-extensions module
flag for the latter (see Module Attributes).

Finally, a module may contain a documentation comment before the
module header, in which case this comment is interpreted by Haddock as
an overall description of the module itself, and placed in a section
entitled Description in the documentation for the module. All the
usual Haddock Markup is valid in this comment.

Controlling the Documentation Structure

Haddock produces interface documentation that lists only the entities
actually exported by the module. If there is no export list then all
entities defined by the module are exported.

The documentation for a module will
include all entities exported by that module, even if they were
re-exported from another module. The only exception is when Haddock can’t
see the declaration for the re-exported entity, perhaps because it isn’t
part of the batch of modules currently being processed.

To Haddock the export list has even more significance than just
specifying the entities to be included in the documentation. It also
specifies the order that entities will be listed in the generated
documentation. This leaves the programmer free to implement functions in
any order he/she pleases, and indeed in any module he/she pleases, but
still specify the order that the functions should be documented in the
export list. Indeed, many programmers already do this: the export list
is often used as a kind of ad-hoc interface documentation, with
headings, groups of functions, type signatures and declarations in
comments.

In the next section we give examples illustrating most of the
structural markup features. After the examples we go into more detail
explaining the related markup, namely Section Headings,
(Named) Chunks of Documentation, and Re-Exporting an Entire Module.

Documentation Structure Examples

We now give several examples that produce similar results and
illustrate most of the structural markup features. The first two
examples use an export list, but the third example does not.

The first example, using an export list with Section Headings
and inline section descriptions:

module Image
 (-- * Image importers
 --
 -- | There is a "smart" importer, 'readImage', that determines
 -- the image format from the file extension, and several
 -- "dumb" format-specific importers that decode the file as
 -- the specified type.
 readImage
 , readPngImage
 , readGifImage
 , ...
 -- * Image exporters
 -- ...
) where

import Image.Types (Image)

-- | Read an image, guessing the format from the file name.
readImage :: FilePath -> IO Image
readImage = ...

-- | Read a GIF.
readGifImage :: FilePath -> IO Image
readGifImage = ...

-- | Read a PNG.
readPngImage :: FilePath -> IO Image
readPngImage = ...

...

Note that the order of the entities readPngImage and
readGifImage in the export list is different from the order of the
actual declarations farther down; the order in the export list is the
order used in the generated docs. Also, the imported Image type
itself is not re-exported, so it will not be included in the rendered
docs (see Hyperlinking and Re-Exported Entities).

The second example, using an export list with a section description
defined elsewhere (the $imageImporters; see (Named) Chunks of Documentation):

module Image
 (-- * Image importers
 --
 -- $imageImporters
 readImage
 , readPngImage
 , readGifImage
 , ...
 -- * Image exporters
 -- ...
) where

import Image.Types (Image)

-- $imageImporters
--
-- There is a "smart" importer, 'readImage', that determines the
-- image format from the file extension, and several "dumb"
-- format-specific importers that decode the file as the specified
-- type.

-- | Read an image, guessing the format from the file name.
readImage :: FilePath -> IO Image
readImage = ...

-- | Read a GIF.
readGifImage :: FilePath -> IO Image
readGifImage = ...

-- | Read a PNG.
readPngImage :: FilePath -> IO Image
readPngImage = ...

...

This produces the same rendered docs as the first example, but the
source code itself is arguably more readable, since the documentation
for the group of importer functions is closer to their definitions.

The third example, without an export list:

module Image where

import Image.Types (Image)

-- * Image importers
--
-- $imageImporters
--
-- There is a "smart" importer, 'readImage', that determines the
-- image format from the file extension, and several "dumb"
-- format-specific importers that decode the file as the specified
-- type.

-- | Read an image, guessing the format from the file name.
readImage :: FilePath -> IO Image
readImage = ...

-- | Read a GIF.
readGifImage :: FilePath -> IO Image
readGifImage = ...

-- | Read a PNG.
readPngImage :: FilePath -> IO Image
readPngImage = ...

...

-- * Image exporters
-- ...

Note that the section headers (e.g. -- * Image importers) now
appear in the module body itself, and that the section documentation
is still given using (Named) Chunks of Documentation. Unlike in the first example
when using an export list, the named chunk syntax $imageImporters
must be used for the section documentation; attempting to use the
-- | ... syntax to document the image importers here will wrongly
associate the documentation chunk with the next definition!

Section Headings

You can insert headings and sub-headings in the documentation by
including annotations at the appropriate point in the export list, or
in the module body directly when not using an export list.

For example:

module Foo (
 -- * Classes
 C(..),
 -- * Types
 -- ** A data type
 T,
 -- ** A record
 R,
 -- * Some functions
 f, g
) where

Headings are introduced with the syntax -- *, -- ** and so
on, where the number of *s indicates the level of the heading
(section, sub-section, sub-sub-section, etc.).

If you use section headings, then Haddock will generate a table of
contents at the top of the module documentation for you.

By default, when generating HTML documentation Haddock will create an
anchor to each section of the form #g:n, where n is an integer
that might change as you add new section headings. If you want to
create stable links, you can add an explicit anchor (see
Anchors) after the section heading:

module Foo (
 -- * Classes #classes#
 C(..)
) where

This will create an HTML anchor #g:classes to the section.

The alternative style of placing the commas at the beginning of each
line is also supported, e.g.:

module Foo (
 -- * Classes
 C(..)
 -- * Types
 -- ** A data type
 , T
 -- ** A record
 , R
 -- * Some functions
 , f
 , g
) where

When not using an export list, you may insert section headers in the
module body. Such section headers associate with all entities
declared up until the next section header. For example:

module Foo where

-- * Classes
class C a where ...

-- * Types
-- ** A data type
data T = ...

-- ** A record
data R = ...

-- * Some functions
f :: ...
f = ...
g :: ...
g = ...

Re-Exporting an Entire Module

Haskell allows you to re-export the entire contents of a module (or at
least, everything currently in scope that was imported from a given
module) by listing it in the export list:

module A (
 module B,
 module C
) where

What will the Haddock-generated documentation for this module look like?
Well, it depends on how the modules B and C are imported. If
they are imported wholly and without any hiding qualifiers, then the
documentation will just contain a cross-reference to the documentation
for B and C.

However, if the modules are not completely re-exported, for example:

module A (
 module B,
 module C
) where

import B hiding (f)
import C (a, b)

then Haddock behaves as if the set of entities re-exported from B
and C had been listed explicitly in the export list.

The exception to this rule is when the re-exported module is declared
with the hide attribute (see Module Attributes), in which
case the module is
never cross-referenced; the contents are always expanded in place in the
re-exporting module.

(Named) Chunks of Documentation

It is often desirable to include a chunk of documentation which is not
attached to any particular Haskell declaration, for example, when
giving summary documentation for a group of related definitions (see
Documentation Structure Examples). In addition to including such documentation
chunks at the top of the file, as part of the
The Module Description, you can also associate them with
Section Headings.

There are several ways to associate documentation chunks with section
headings, depending on whether you are using an export list or not:

	The documentation can be included in the export list directly, by
preceding it with a -- |. For example:

module Foo (
 -- * A section heading

 -- | Some documentation not attached to a particular Haskell entity
 ...
) where

In this case the chunk is not “named”.

	If the documentation is large and placing it inline in the export
list might bloat the export list and obscure the structure, then it
can be given a name and placed out of line in the body of the module.
This is achieved with a special form of documentation annotation
-- $, which we call a named chunk:

module Foo (
 -- * A section heading

 -- $doc
 ...
) where

-- $doc
-- Here is a large chunk of documentation which may be referred to by
-- the name $doc.

The documentation chunk is given a name of your choice (here
doc), which is the sequence of alphanumeric characters directly
after the -- $, and it may be referred to by the same name in
the export list. Note that named chunks must come after any
imports in the module body.

	If you aren’t using an export list, then your only choice is to use
a named chunk with the -- $ syntax. For example:

module Foo where

-- * A section heading
--
-- $doc
-- Here is a large chunk of documentation which may be referred to by
-- the name $doc.

Just like with entity declarations when not using an export list,
named chunks of documentation are associated with the preceding
section header here, or with the implicit top-level documentation
section if there is no preceding section header.

Warning: the form used in the first bullet above, where the
chunk is not named, does not work when you aren’t using an
export list. For example:

module Foo where

-- * A section heading
--
-- | Some documentation not attached to a particular Haskell entity

-- | The fooifier.
foo :: ...

will result in Some documentation not ... being attached to the
next entity declaration, here foo, in addition to any other
documentation that next entity already has!

Hyperlinking and Re-Exported Entities

When Haddock renders a type in the generated documentation, it
hyperlinks all the type constructors and class names in that type to
their respective definitions. But for a given type constructor or class
there may be several modules re-exporting it, and therefore several
modules whose documentation contains the definition of that type or
class (possibly including the current module!) so which one do we link
to?

Let’s look at an example. Suppose we have three modules A, B and
C defined as follows:

module A (T) where
data T a = C a

module B (f) where
import A
f :: T Int -> Int
f (C i) = i

module C (T, f) where
import A
import B

Module A exports a datatype T. Module B imports A and
exports a function f whose type refers to T. Also, both T
and f are re-exported from module C.

Haddock takes the view that each entity has a home module; that is,
the module that the library designer would most like to direct the user
to, to find the documentation for that entity. So, Haddock makes all
links to an entity point to the home module. The one exception is when
the entity is also exported by the current module: Haddock makes a local
link if it can.

How is the home module for an entity determined? Haddock uses the
following rules:

	If modules A and B both export the entity, and module A imports
(directly or indirectly) module B, then B is preferred.

	A module with the hide attribute is never chosen as the home.

	A module with the not-home attribute is only chosen if there are
no other modules to choose.

If multiple modules fit the criteria, then one is chosen at random. If
no modules fit the criteria (because the candidates are all hidden),
then Haddock will issue a warning for each reference to an entity
without a home.

In the example above, module A is chosen as the home for T
because it does not import any other module that exports T. The link
from f’s type in module B will therefore point to A.T.
However, C also exports T and f, and the link from f’s
type in C will therefore point locally to C.T.

Module Attributes

Certain attributes may be specified for each module which affect the
way that Haddock generates documentation for that module. Attributes are
specified in a comma-separated list in an
{-# OPTIONS_HADDOCK ... #-} pragma at the top of the module, either
before or after the module description. For example:

{-# OPTIONS_HADDOCK hide, prune #-}

-- |Module description
module A where
...

The options and module description can be in either order.

The following attributes are currently understood by Haddock:

	hide

	Omit this module from the generated documentation, but nevertheless
propagate definitions and documentation from within this module to
modules that re-export those definitions.

	prune

	Omit definitions that have no documentation annotations from the
generated documentation.

	not-home

	Indicates that the current module should not be considered to be the
home module for each entity it exports, unless that entity is not
exported from any other module. See Hyperlinking and Re-Exported Entities
for more details.

	show-extensions

	Indicates that we should render the extensions used in this module
in the resulting documentation. This will only render if the output
format supports it. If Language is set, it will be shown as well and
all the extensions implied by it won’t. All enabled extensions will
be rendered, including those implied by their more powerful
versions.

	print-explicit-runtime-reps

	Print type variables that have kind RuntimeRep. By default, these
are defaulted to LiftedRep so that end users don’t have to see the
underlying levity polymorphism. This flag is analogous to GHC’s
-fprint-explicit-runtime-reps flag.

Markup

Haddock understands certain textual cues inside documentation
annotations that tell it how to render the documentation. The cues (or
“markup”) have been designed to be simple and mnemonic in ASCII so
the programmer doesn’t have to deal with heavyweight annotations when
editing documentation comments.

Paragraphs

One or more blank lines separates two paragraphs in a documentation
comment.

Special Characters

The following characters have special meanings in documentation comments:
\, /, ', `, ", @, <, $, #. To insert a
literal occurrence of one of these special characters, precede it with a
backslash (\).

Additionally, the character > has a special meaning at the beginning
of a line, and the following characters have special meanings at the
beginning of a paragraph: *, -. These characters can also be
escaped using \.

Furthermore, the character sequence >>> has a special meaning at the
beginning of a line. To escape it, just prefix the characters in the
sequence with a backslash.

Character References

Although Haskell source files may contain any character from the Unicode
character set, the encoding of these characters as bytes varies between
systems. Consequently, only source files restricted to the ASCII character set
are portable. Other characters may be specified in character and string
literals using Haskell character escapes. To represent such characters
in documentation comments, Haddock supports SGML-style numeric character
references of the forms &#D; and &#xH; where D
and H are decimal and hexadecimal numbers denoting a code position in
Unicode (or ISO 10646). For example, the references λ,
λ and λ all represent the lower-case letter lambda.

Code Blocks

Displayed blocks of code are indicated by surrounding a paragraph with
@...@ or by preceding each line of a paragraph with > (we often
call these “bird tracks”). For example:

-- | This documentation includes two blocks of code:
--
-- @
-- f x = x + x
-- @
--
-- > g x = x * 42

There is an important difference between the two forms of code block: in
the bird-track form, the text to the right of the ‘>’ is
interpreted literally, whereas the @...@ form interprets markup as
normal inside the code block. In particular, / is markup for italics,
and so e.g. @x / y / z@ renders as x followed by italic
y with no slashes, followed by z.

Examples

Haddock has markup support for examples of interaction with a
read-eval-print loop (REPL). An example is introduced with >>>
followed by an expression followed by zero or more result lines:

-- | Two examples are given below:
--
-- >>> fib 10
-- 55
--
-- >>> putStrLn "foo\nbar"
-- foo
-- bar

Result lines that only contain the string <BLANKLINE> are rendered
as blank lines in the generated documentation.

Properties

Haddock provides markup for properties:

-- | Addition is commutative:
--
-- prop> a + b = b + a

This allows third-party applications to extract and verify them.

Hyperlinked Identifiers

Referring to a Haskell identifier, whether it be a type, class,
constructor, or function, is done by surrounding it with a combination
of single quotes and backticks. For example:

-- | This module defines the type 'T'.

`T` is also ok. 'T` and `T' are accepted but less common.

If there is an entity T in scope in the current module, then the
documentation will hyperlink the reference in the text to the definition
of T (if the output format supports hyperlinking, of course; in a
printed format it might instead insert a page reference to the
definition).

It is also possible to refer to entities that are not in scope in the
current module, by giving the full qualified name of the entity:

-- | The identifier 'M.T' is not in scope

If M.T is not otherwise in scope, then Haddock will simply emit a
link pointing to the entity T exported from module M (without
checking to see whether either M or M.T exist).

Since values and types live in different namespaces in Haskell, it is possible
for a reference such as 'X' to be ambiguous. In such a case, Haddock
defaults to pointing to the type. The ambiguity can be overcome by explicitly
specifying a namespace, by way of a v (for value) or t (for type)
immediately before the link:

-- | An implicit reference to 'X', the type constructor
-- An explicit reference to v'X', the data constructor
-- An explicit reference to t'X', the type constructor
data X = X

To make life easier for documentation writers, a quoted identifier is
only interpreted as such if the quotes surround a lexically valid
Haskell identifier. This means, for example, that it normally isn’t
necessary to escape the single quote when used as an apostrophe:

-- | I don't have to escape my apostrophes; great, isn't it?

Nothing special is needed to hyperlink identifiers which contain
apostrophes themselves: to hyperlink foo' one would simply type
'foo''. Hyperlinking operators works in exactly the same way.

-- | A prefix operator @'(++)'@ and an infix identifier @'`elem`'@.

Emphasis, Bold and Monospaced Styled Text

Text can be emphasized, made bold (strong) or monospaced (typewriter font)
by surrounding it with slashes, double-underscores or at-symbols:

-- | This is /emphasized text/, __bold text__ and @monospaced text@.

Note that those styled texts must be kept on the same line:

-- | Styles /do not work
-- | when continuing on the next line/

Other markup is valid inside emphasized, bold and monospaced text.

Frequent special cases:

	To have a forward slash inside of emphasis, just escape it: /fo\/o/.

	There’s no need to escape a single underscore if you need it
bold: __This_text_with_underscores_is_bold__.

	@'f' a b@ will hyperlink the identifier f inside the code
fragment.

	@__FILE__@ will render FILE in bold with no underscores,
which may not be what you had in mind.

Linking to Modules

Linking to a module is done by surrounding the module name with double
quotes:

-- | This is a reference to the "Foo" module.

A basic check is done on the syntax of the header name to ensure that it
is valid before turning it into a link but unlike with identifiers,
whether the module is in scope isn’t checked and will always be turned
into a link.

It is also possible to specify alternate text for the generated link
using syntax analogous to that used for URLs:

-- | This is a reference to [the main module]("Module.Main").

Itemized and Enumerated Lists

A bulleted item is represented by preceding a paragraph with either
“*” or “-”. A sequence of bulleted paragraphs is rendered as an
itemized list in the generated documentation, e.g.:

-- | This is a bulleted list:
--
-- * first item
--
-- * second item

An enumerated list is similar, except each paragraph must be preceded by
either “(n)” or “n.” where n is any integer. e.g.

-- | This is an enumerated list:
--
-- (1) first item
--
-- 2. second item

Lists of the same type don’t have to be separated by a newline:

-- | This is an enumerated list:
--
-- (1) first item
-- 2. second item
--
-- This is a bulleted list:
--
-- * first item
-- * second item

You can have more than one line of content in a list element:

-- |
-- * first item
-- and more content for the first item
-- * second item
-- and more content for the second item

You can even nest whole paragraphs inside of list elements. The rules
are 4 spaces for each indentation level. You’re required to use a
newline before such nested paragraphs:

{-|
* Beginning of list
This belongs to the list above!

 > nested
 > bird
 > tracks

 * Next list
 More of the indented list.

 * Deeper

 @
 even code blocks work
 @

 * Deeper

 1. Even deeper!
 2. No newline separation even in indented lists.
-}

The indentation of the first list item is honoured. That is, in the
following example the items are on the same level. Before Haddock
2.16.1, the second item would have been nested under the first item
which was unexpected.

{-|
 * foo

 * bar
-}

Definition Lists

Definition lists are written as follows:

-- | This is a definition list:
--
-- [@foo@]: The description of @foo@.
--
-- [@bar@]: The description of @bar@.

To produce output something like this:

	foo

	The description of foo.

	bar

	The description of bar.

Each paragraph should be preceded by the “definition term” enclosed in
square brackets and followed by a colon. Other markup operators may be
used freely within the definition term. You can escape] with a
backslash as usual.

Same rules about nesting and no newline separation as for bulleted and
numbered lists apply.

URLs

A URL can be included in a documentation comment by surrounding it in
angle brackets, for example:

<http://example.com>

If the output format supports it, the URL will be turned into a
hyperlink when rendered.

If Haddock sees something that looks like a URL (such as something
starting with http:// or ssh://) where the URL markup is valid,
it will automatically make it a hyperlink.

Links

Haddock supports Markdown syntax for inline links. A link consists of a
link text and a URL. The link text is enclosed in square brackets and
followed by the URL enclosed in regular parentheses, for example:

[some link](http://example.com)

The link text is used as a description for the URL if the output
format supports it.

Images

Haddock supports Markdown syntax for inline images. This resembles the
syntax for links, but starts with an exclamation mark. An example looks
like this:

![image description](pathtoimage.png)

If the output format supports it, the image will be rendered inside the
documentation. The image description is used as replacement text and/or
an image title.

Mathematics / LaTeX

Haddock supports LaTeX syntax for rendering mathematical notation. The
delimiters are \[...\] for displayed mathematics and \(...\)
for in-line mathematics. An example looks like this:

\[
f(a) = \frac{1}{2\pi i}\oint_\gamma \frac{f(z)}{z-a}\,\mathrm{d}z
\]

If the output format supports it, the mathematics will be rendered
inside the documentation. For example, the HTML backend will display
the mathematics via MathJax [https://www.mathjax.org].

Grid Tables

Inspired by reSTs grid tables, Haddock supports a complete table representation
via grid-like “ASCII art”. Grid tables are described with a visual grid made
up of the characters “-”, “=”, “|”, and “+”. The hyphen (“-”) is used for
horizontal lines (row separators). The equals sign (“=”) may be used to
separate optional header rows from the table body. The vertical bar (“|”) is
used for vertical lines (column separators). The plus sign (“+”) is used for
intersections of horizontal and vertical lines.

-- | This is a grid table:
--
-- +------------------------+------------+----------+----------+
-- | Header row, column 1 | Header 2 | Header 3 | Header 4 |
-- | (header rows optional) | | | |
-- +========================+============+==========+==========+
-- | body row 1, column 1 | column 2 | column 3 | column 4 |
-- +------------------------+------------+----------+----------+
-- | body row 2 | Cells may span columns. |
-- +------------------------+------------+---------------------+
-- | body row 3 | Cells may | \[|
-- +------------------------+ span rows. | f(n) = \sum_{i=1} |
-- | body row 4 | | \] |
-- +------------------------+------------+---------------------+

Anchors

Sometimes it is useful to be able to link to a point in the
documentation which doesn’t correspond to a particular entity. For that
purpose, we allow anchors to be included in a documentation comment.
The syntax is #label#, where label is the name of the anchor. An
anchor is invisible in the generated documentation.

To link to an anchor from elsewhere, use the syntax "module#label"
where module is the module name containing the anchor, and label is the
anchor label. The module does not have to be local, it can be imported
via an interface. Please note that in Haddock versions 2.13.x and
earlier, the syntax was "module\#label". It is considered deprecated
and will be removed in the future.

Headings

Headings inside of comment documentation are possible by preceding them
with a number of =s. From 1 to 6 are accepted. Extra =s will
be treated as belonging to the text of the heading. Note that it’s up to
the output format to decide how to render the different levels.

-- |
-- = Heading level 1 with some /emphasis/
-- Something underneath the heading.
--
-- == /Subheading/
-- More content.
--
-- === Subsubheading
-- Even more content.

Note that while headings have to start on a new paragraph, we allow
paragraph-level content to follow these immediately.

-- |
-- = Heading level 1 with some __bold__
-- Something underneath the heading.
--
-- == /Subheading/
-- More content.
--
-- === Subsubheading
-- >>> examples are only allowed at the start of paragraphs

As of 2.15.1, there’s experimental (read: subject to change or get
removed) support for collapsible headers: simply wrap your existing
header title in underscores, as per bold syntax. The collapsible section
will stretch until the end of the comment or until a header of equal or
smaller number of =s.

-- |
-- === __Examples:__
-- >>> Some very long list of examples
--
-- ==== This still falls under the collapse
-- Some specialised examples
--
-- === This is does not go into the collapsable section.
-- More content.

Metadata

Since Haddock 2.16.0, some support for embedding metadata in the
comments has started to appear. The use of such data aims to standardise
various community conventions in how such information is conveyed and to
provide uniform rendering.

Since

@since annotation can be used to convey information about when the
function was introduced or when it has changed in a way significant to
the user. @since is a paragraph-level element. While multiple such
annotations are not an error, only the one to appear in the comment last
will be used. @since has to be followed with a version number, no
further description is currently allowed. The meaning of this feature is
subject to change in the future per user feedback.

-- |
-- Some comment
--
-- @since 1.2.3

Common Errors

parse error on input ‘-- | xxx’

This is probably caused by the -- | xxx comment not following a declaration. I.e. use -- xxx instead. See Documenting a Top-Level Declaration.

parse error on input ‘-- $ xxx’

You’ve probably commented out code like:

f x
 $ xxx

-- $ is a special syntax for named chunks, see (Named) Chunks of Documentation. You can fix this by escaping the $:

-- \$ xxx

Haddocks of multiple components

Haddock supports building documentation of multiple components. First, one
needs to build haddocks of all components which can be done with:

cabal haddock --haddock-html \
 --haddock-quickjump \
 --haddock-option="--use-index=../doc-index.html" \
 --haddock-option="--use-contents=../index.html" \
 --haddock-option="--base-url=.." \
 all

The new --base-url option will allow to access the static files from the
main directory (in this example its the relative ./.. directory). It will
also prevent haddock from copying its static files to each of the
documentation folders, we’re only need a single copy of them where the
--base-url option points to.

The second step requires to copy all the haddocks to a common directory, let’s
say ./docs, this will depend on your project and it might look like:

cp -r dist-newstyle/build/x86_64-linux/ghc-9.0.1/package-a-0.1.0.0/doc/html/package-a/ docs
cp -r dist-newstyle/build/x86_64-linux/ghc-9.0.1/package-b-0.1.0.0/doc/html/package-b/ docs

Note that you can also include documentation of other packages in this way,
e.g. base, but you need to know where it is hidden on your hard-drive.

To build html and js (quickjump) indexes one can now invoke haddock with:

haddock \
 -o docs \
 --quickjump --gen-index --gen-contents \
 --read-interface=package-a,docs/package-a/package-a.haddock \
 --read-interface=package-b,docs/package-b/package-b.haddock

Note: the PATH in --read-interface=PATH,... must be a relative url of
a package it points to (relative to the docs directory).

There’s an example project which shows how to do that posted here [https://github.com/coot/haddock-example], which haddocks are served on
github-pages [https://coot.github.io/haddock-example].

Index

 Symbols
 | C

Symbols

 	
 	
 --base-url=<url>

 	command line option

 	
 --built-in-themes

 	command line option

 	
 --bypass-interface-version-check

 	command line option

 	
 --comments-base=<url>

 	command line option

 	
 --comments-entity=<url>

 	command line option

 	
 --comments-module=<url>

 	command line option

 	
 --compatible-interface-versions

 	command line option

 	
 --css=<file>

 	command line option

 	
 --dump-interface=<file>

 	command line option

 	
 --gen-contents

 	command line option

 	
 --gen-index

 	command line option

 	
 --ghc-version

 	command line option

 	
 --help

 	command line option

 	
 --hide <module>

 	command line option

 	
 --hoogle

 	command line option

 	
 --html, -h

 	command line option

 	
 --hyperlinked-source

 	command line option

 	
 --interface-version

 	command line option

 	
 --latex

 	command line option

 	
 --latex-style=<style>

 	command line option

 	
 --lib=<dir>

 	command line option

 	
 --mathjax

 	command line option

 	
 --no-tmp-comp-dir

 	command line option

 	
 --no-warnings

 	command line option

 	
 --odir=<dir>

 	command line option

 	
 --optghc=<option>

 	command line option

 	
 --package-name=<name>

 	command line option

 	
 --package-version=<version>

 	command line option

 	
 --print-ghc-libdir

 	command line option

 	
 --print-ghc-path

 	command line option

 	
 --print-missing-docs

 	command line option

 	
 --prologue=<file>

 	command line option

 	
 --qual=<mode>

 	command line option

 	
 --read-interface=<file>

 	command line option

 	
 	
 --show <module>

 	command line option

 	
 --show-all

 	command line option

 	
 --show-extensions <module>

 	command line option

 	
 --show-interface=<file>

 	command line option

 	
 --since-qual=<mode>

 	command line option

 	
 --source-base=<url>

 	command line option

 	
 --source-css=<style>

 	command line option

 	
 --source-entity-line=<url>

 	command line option

 	
 --source-entity=<url>

 	command line option

 	
 --source-module=<url>

 	command line option

 	
 --source=<url>

 	command line option

 	
 --theme=<path>

 	command line option

 	
 --title=<title>

 	command line option

 	
 --trace-args

 	command line option

 	
 --use-contents=<url>

 	command line option

 	
 --use-index=<url>

 	command line option

 	
 --use-unicode

 	command line option

 	
 --verbose

 	command line option

 	
 --version

 	command line option

 	
 -?

 	command line option

 	
 -B <dir>

 	command line option

 	
 -c <file>

 	command line option

 	
 -D <file>

 	command line option

 	
 -i <file>

 	command line option

 	
 -l <dir>

 	command line option

 	
 -o <dir>

 	command line option

 	
 -p <file>

 	command line option

 	
 -q <mode>

 	command line option

 	
 -s <url>

 	command line option

 	
 -S, --docbook

 	command line option

 	
 -t <title>

 	command line option

 	
 -V

 	command line option

 	
 -v

 	command line option

 	
 -w

 	command line option

C

 	
 	
 command line option

 	--base-url=<url>

 	--built-in-themes

 	--bypass-interface-version-check

 	--comments-base=<url>

 	--comments-entity=<url>

 	--comments-module=<url>

 	--compatible-interface-versions

 	--css=<file>

 	--dump-interface=<file>

 	--gen-contents

 	--gen-index

 	--ghc-version

 	--help

 	--hide <module>

 	--hoogle

 	--html, -h

 	--hyperlinked-source

 	--interface-version

 	--latex

 	--latex-style=<style>

 	--lib=<dir>

 	--mathjax

 	--no-tmp-comp-dir

 	--no-warnings

 	--odir=<dir>

 	--optghc=<option>

 	--package-name=<name>

 	--package-version=<version>

 	--print-ghc-libdir

 	--print-ghc-path

 	--print-missing-docs

 	--prologue=<file>

 	--qual=<mode>

 	--read-interface=<file>

 	--show <module>

 	--show-all

 	--show-extensions <module>

 	--show-interface=<file>

 	--since-qual=<mode>

 	--source-base=<url>

 	--source-css=<style>

 	--source-entity-line=<url>

 	--source-entity=<url>

 	--source-module=<url>

 	--source=<url>

 	--theme=<path>

 	--title=<title>

 	--trace-args

 	--use-contents=<url>

 	--use-index=<url>

 	--use-unicode

 	--verbose

 	--version

 	-?

 	-B <dir>

 	-D <file>

 	-S, --docbook

 	-V

 	-c <file>

 	-i <file>

 	-l <dir>

 	-o <dir>

 	-p <file>

 	-q <mode>

 	-s <url>

 	-t <title>

 	-v

 	-w

 _static/up.png

nav.xhtml

 Table of Contents

 		
 Welcome to Haddock’s documentation!

 		
 Introduction

 		
 Obtaining Haddock

 		
 License

 		
 Contributors

 		
 Acknowledgements

 		
 Invoking Haddock

 		
 Using literate or pre-processed source

 		
 Avoiding recompilation

 		
 Documentation and Markup

 		
 Documenting a Top-Level Declaration

 		
 Documenting Parts of a Declaration

 		
 Class Methods

 		
 Constructors and Record Fields

 		
 Deriving clauses

 		
 Function Arguments

 		
 The Module Description

 		
 Fields of the Module Description

 		
 Controlling the Documentation Structure

 		
 Documentation Structure Examples

 		
 Section Headings

 		
 Re-Exporting an Entire Module

 		
 (Named) Chunks of Documentation

 		
 Hyperlinking and Re-Exported Entities

 		
 Module Attributes

 		
 Markup

 		
 Paragraphs

 		
 Special Characters

 		
 Character References

 		
 Code Blocks

 		
 Examples

 		
 Properties

 		
 Hyperlinked Identifiers

 		
 Emphasis, Bold and Monospaced Styled Text

 		
 Linking to Modules

 		
 Itemized and Enumerated Lists

 		
 Definition Lists

 		
 URLs

 		
 Links

 		
 Images

 		
 Mathematics / LaTeX

 		
 Grid Tables

 		
 Anchors

 		
 Headings

 		
 Metadata

 		
 Common Errors

 		
 parse error on input ‘– | xxx’

 		
 parse error on input ‘– $ xxx’

 		
 Haddocks of multiple components

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/minus.png

_static/plus.png

_static/file.png

_static/up-pressed.png

_static/ajax-loader.gif

_static/comment-bright.png

